Friday, April 27, 2007

APOD


M81 is a fairly large spiral galaxy, about as large as the Milky way and one of the brightest in the night sky. The yellow core of the galaxy is clearly visible, as is the nearby companion galaxy, Homberg IX. Both galaxies are viewed here through the stars in our Milky Way, as well as some highly-reflective dust clouds high above the galactic plane, which have been dubbed "integrated flux nebulae".

APOD


M81 is a fairly large spiral galaxy, about as large as the Milky way and one of the brightest in the night sky. The yellow core of the galaxy is clearly visible, as is the nearby companion galaxy, Homberg IX. Both galaxies are viewed here through the stars in our Milky Way, as well as some highly-reflective dust clouds high above the galactic plane, which have been dubbed "integrated flux nebulae".

Friday, April 20, 2007

NGC 5139: Omega Centauri


Centaurus, a southern constellation named for the mythical half-horse half-man, contains the largest globular cluster corrently observed by mankind. It also includes the star Alpha Centauri, the closest star to our Sun. The globular cluster itself is almost 15,000 lightyears away, and is one of the 150 globular clusters that form a sort of "halo" around our Milky Way galaxy.

Wednesday, April 11, 2007

Blazar

A blazar is a very compact and highly variable energy source associated with a supermassive black hole at the center of a host galaxy. Blazars are among the most violent phenomena in the universe and are an important topic in extragalactic astronomy.
Blazars are members of a larger group of Active Galaxies, also termed Active Galactic Nuclei (AGN). However, blazars are not a homogeneous group and can be divided into two: highly variable quasars, sometimes called Optically Violently Variable (OVV) quasars (these are a small subset of all quasars) and BL Lacertae objects ("BL Lac objects" or simply "BL Lacs"). A few rare objects may be "intermediate blazars" that appear to have a mixture of properties from both OVV quasars and BL Lac objects. The name "blazar" was originally coined in 1978 by astronomer Ed Spiegel to denote the combination of these two classes.
Blazars are AGN with a relativistic jet that is pointing in the general direction of the Earth. We observe "down" the jet, or nearly so, and this accounts for the rapid variability and compact features of both types of blazars. Many blazars have apparent superluminal features within the first few parsecs of their jets, probably due to relativistic shock fronts.[1]
The generally accepted picture is that OVV quasars are intrinsically powerful radio galaxies while BL Lac objects are intrinsically weak radio galaxies. In both cases the host galaxies are giant ellipticals.
Alternative models, for example, gravitational microlensing, may account for a few observations of some blazars which are not consistent with the general properties.
Structure

Blazars, like all AGN, are ultimately powered by material falling onto a supermassive black hole at the center of the host galaxy. Gas, dust and the occasional star are captured and spiral into this central black hole creating a hot accretion disk which generates enormous amounts of energy in the form of photons, electrons, positrons and other elementary particles. This region is quite small, approximately 10−3 parsecs in size.
There is also a larger opaque torus extending several parsecs from the central black hole, containing a hot gas with embedded regions of higher density. These "clouds" can absorb and then re-emit energy from regions closer to the black hole. On Earth the clouds are detected as emission lines in the blazar spectrum.
Perpendicular to the accretion disk, a pair of relativistic jets carry a highly energetic plasma away from the AGN. The jet is collimated by a combination of intense magnetic fields and power winds from the accretion disk and torus. Inside the jet, high energy photons and particles interact with each other and the strong magnetic field. These relativistic jets can extend as far as many tens of kiloparsecs from the central black hole.
All of these regions can produce a variety of observed energy, mostly in the form of a nonthermal spectrum ranging from very low frequency radio to extremely energetic gamma rays, with a high polarization (typically a few percent) at some frequencies. The nonthermal spectrum consists of synchrotron radiation in the radio to X-ray range, and inverse Compton emission in the X-ray to gamma-ray region. A thermal spectrum peaking in the ultraviolet region and faint optical emission lines are also present in OVV quasars, but faint or non-existent in BL Lac objects.

[edit] Relativistic Beaming

The observed emission from a Blazar is greatly enhanced by relativistic effects in the jet, a process termed relativistic beaming.The bulk speed of the plasma that constitutes the jet can be in the range of 95%–99% of the speed of light. (This bulk velocity is not the speed of a typical electron or proton in the jet. The individual particles move in many directions with the result being that the net speed for the plasma is in the range mentioned.)
The relationship between the luminosity emitted in the rest frame of the jet and the luminosity observed from Earth depends on the characteristics of the jet. These include whether the luminosity arises from a shock front or a series of brighter blobs in the jet, as well as details of the magnetic fields within the jet and their interaction with the moving particles.
A simple model of beaming however, illustrates the basic relativistic effects connecting the luminosity emitted in the rest frame of the jet, Se and the luminosity observed on Earth, So. These are connected by a term referred to in astrophysics as the doppler factor, D, where So is proportional to Se × D2.
When looked at in much more detail than shown here, three relativistic effects are at involved:
Relativistic Aberration contributes a factor of D2. Aberration is a consequence of special relativity where directions which appear isotropic in the rest frame (in this case, the jet) appear pushed towards the direction of motion in the observer's frame (in this case, the Earth).
Time Dilation contributed a factor of D+1. This effect speeds up the apparent release of energy. If the jet emits a burst of energy every minute in its own rest frame this may be observed on Earth as being a much faster release, perhaps one burst every ten seconds.
Windowing can contribute a factor of D−1 and then works to decrease the amount of boosting. This happens for a steady flow, because there are then D fewer elements of fluid within the observed window, as each element has been expanded by factor D. However, for a freely propagating blob of material, the radiation is boosted by the full D+3.

[edit] An Example
Consider a jet with an angle to the lines of sight θ = 5 degrees and a speed of 98% of the speed of light. On Earth the observed luminiosity is 70 times that of the emitted luminosity. However if θ is at the minimum value of 0 degrees the jet will appear 600 times brighter from Earth.

[edit] Beaming Away
Relativistic beaming also has another critical consequence. The jet which is not approaching Earth will appear dimmer because of the same relativistic effects. Therefore two intrinsically identical jets will appear significantly asymmetric. Indeed, in the example given above any jet where θ < 35 degrees will be observed on Earth as less luminious than it would be from the rest frame of the jet.
A further consequence is that a population of intrinsically identical AGN scattered in space with random jet orientations will look like a very inhomogeneous population on Earth. The few objects where θ is small will have one very bright jet, while the rest will apparently have considerably weaker jets. Those where θ varies from 90° will appear to have asymmetric jets.
This is the essence behind the connection between blazars and radio galaxies. AGN which have jets oriented close to the line of sight with Earth can appear extremely different from other AGN even if they are intrinsically identical.

[edit] Discovery
Many of the brighter blazars were first identified, not as powerful distant galaxies, but as irregular variable stars in our own galaxy. These blazars, like genuine irregular variable stars, changed in brightness on periods of days or years, but with no pattern.
The early development of radio astronomy had shown that there are numerous bright radio sources in the sky. By the end of the 1950s the resolution of radio telescopes was sufficient to be able to identify specific radio sources with optical counterparts, leading to the discovery of quasars. Blazars were highly represented among these early quasars, and indeed the first redshift was found for 3C 273 — a highly variable quasar which is also a blazar.
In 1968 a similar connection between the "variable star" BL Lacertae and a powerful radio source was made. BL Lacertae shows many of the characteristics of quasars, but the optical spectrum was devoid of the spectral lines used to detemine redshift. Faint indications of an underlying galaxy — proof that BL Lacertae was not a star — was found in 1974.
The extragalactic nature of BL Lacertae was not a surprise. In 1972 a few variable optical and radio sources were grouped together and proposed as a new class of galaxy: BL Lacertae-type objects. This terminology was soon shortened to "BL Lacertae object," "BL Lac object," or simply "BL Lac." (Note that the latter term can also mean the original blazar and not the entire class.)
As of 2003, a few hundreds of BL Lac objects are known.

[edit] Current vision
Blazars are thought to be active galaxy nuclei, with relativistic jets oriented close to the line of sight with the observer.
The special jet orientation explains the general peculiar characteristics: high observed luminosity, very rapid variation, high polarization (when compared with non-blazar quasars), and the apparent superluminal motions detected along the first few parsecs of the jets in most blazars.
A Unified Scheme or Unified Model has become generally accepted where highly variable quasars are related to intrinsically powerful radio galaxies, and BL Lac objects are related to intrinsically weak radio galaxies. The distinction between these two connected populations explains the difference in emission line properties in blazars.
Alternate explanations for the relativistic jet/unified scheme approach have been proposed include gravitational microlensing and coherent emission from the relativistic jet. Neither of these explain the overall properties of blazars. For example microlensing is achromatic, that is all parts of a spectrum will rise and fall together. This is very clearly not observed in blazars. However it is possible that these processes, as well as more complex plasma physics can account for specific observations or some details.
Some examples for blazars include 3C 273, BL Lacertae, PKS 2155-304, Markarian 421, and Markarian 501. The latter two are also called "TeV Blazars" for their high energy (Tera electron volt range) gamma-ray emission.

Active galaxies

An active galactic nucleus (AGN) is a compact region at the centre of a galaxy which has a much higher than normal luminosity over some or all of the electromagnetic spectrum (in the radio, infrared, optical, ultra-violet, X-ray and/or gamma ray wavebands). A galaxy hosting an AGN is called an active galaxy. The radiation from AGN is believed to be a result of accretion on to the supermassive black hole at the centre of the host galaxy. AGN are the most luminous persistent sources of electromagnetic radiation in the universe, and as such can be used as a means of discovering distant objects; their evolution as a function of cosmic time also provides constraints on cosmological models.
Models of the active nucleus
For a long time it has been argued (e.g. Lynden-Bell 1969) that AGN must be powered by accretion on to massive black holes (with masses between 106 and 1010 times that of the Sun). AGN are both compact and persistent extremely luminous: accretion can potentially give very efficient conversion of potential and kinetic energy to radiation, and a massive black hole has a high Eddington luminosity, so that it can provide the observed high persistent luminosity. Central supermassive black holes are now believed to exist in the centres of all massive galaxies: the mass of the black hole correlates well with the velocity dispersion or luminosity of the bulge of the galaxy (e.g. Marconi & Hunt 2003). Thus we expect to see AGN-like characteristics whenever a supply of material for accretion comes within the sphere of influence of the central black hole.
In the standard model of AGN, cold material close to the central black hole forms an accretion disc. Dissipative processes in the accretion disc transport matter inwards and angular momentum outwards, while causing the accretion disc to heat up. The expected spectrum of an accretion disc around a supermassive black hole peaks in the optical-ultraviolet waveband; in addition, a corona of hot material forms above the accretion disc and can inverse-Compton scatter photons up to X-ray energies. The radiation from the accretion disc excites cold atomic material close to the black hole and this radiates via emission lines. A large fraction of the AGN's primary output may be obscured by interstellar gas and dust close to the accretion disc, but (in a steady-state situation) we expect this to be re-radiated at some other waveband, most likely the infrared.
At least some accretion discs produce jets, twin highly collimated and fast outflows that emerge from close to the disc (the direction of the jet ejection must be determined either by the angular momentum axis of the disc or the spin axis of the black hole). The jet production mechanism and indeed the jet composition on very small scales are not known at present, as observations cannot distinguish between the various theoretical models that exist. The jets have the most obvious observational effects in the radio waveband, where Very Long Baseline Interferometry can be used to study the synchrotron radiation they emit down to sub-parsec scales. However, they radiate in all wavebands from the radio through to the gamma-ray via the synchrotron and inverse-Compton process, and so AGN with jets have a second potential source of any observed continuum radiation.
Finally, it is important to bear in mind that there exists a class of 'radiatively inefficient' solutions to the equations that govern accretion. The most widely known of these is the accretion-dominated advection flow (ADAF, Narayan & Yi 1994) but others exist. In this type of accretion, which is important for accretion rates well below the Eddington limit, the accreting matter does not form a thin disc and consequently does not radiate away the energy that it has acquired in moving close to the black hole. Radiatively inefficient accretion has been used to explain the lack of strong AGN-type radiation from massive black holes in the centres of elliptical galaxies in clusters, where otherwise we might expect high accretion rates and corresponding high luminosities (Fabian & Rees 1995). Radiatively inefficient AGN would be expected to lack many of the characteristic features of standard AGN with an accretion disc.

[edit] Observational characteristics
There is no single observational signature of an AGN. The list below covers some of the historically important features that have allowed systems to be identified as AGN.
Nuclear optical continuum emission. We expect to see this whenever we have a direct view of the accretion disc. Jets can also contribute to this component of the AGN emission. The optical emission has a roughly power-law dependence on wavelength.
Nuclear infra-red emission. We expect to see this whenever the accretion disc and its environment are obscured by gas and dust close to the nucleus and then re-emitted ('reprocessing'). As this is thermal emission, it can be distinguished from any jet or disc-related component.
Broad optical emission lines. These come from cold material close to the central black hole. The lines are broad because the emitting material is moving with high speeds.
Narrow optical emission lines. These come from more distant cold material, and so are narrower than the broad lines.
Radio continuum emission. This is always due to a jet. It shows a spectrum characteristic of synchrotron radiation.
X-ray continuum emission. This can arise both from a jet and from the hot corona of the accretion disc via scattering processes: in both cases it shows a power-law spectrum. In some radio-quiet AGN there is a `soft excess' in the X-ray emission in addition to the power-law component. The origin of the soft excess is not clear at present.
X-ray line emission. This is a result of illumination of cold heavy elements by the X-ray continuum. Fluorescence gives rise to various emission lines, the best-known of which is the iron feature around 6.4 keV. This line may be narrow or broad: relativistically broadened iron lines can be used to study the dynamics of the accretion disc very close to the nucleus and therefore the nature of the central black hole.

[edit] Types of active galaxy
It is convenient to divide AGN into two classes, conventionally called radio-quiet and radio-loud. In the radio-loud objects a contribution from the jet and the lobes it inflates dominates the luminosity of the AGN, at least at radio wavelengths but possibly at some or all others. Radio-quiet objects are simpler since jet and jet-related emission can be neglected.
AGN terminology is often confusing, since the distinctions between different types of AGN sometimes reflects historical differences in how objects were discovered or initially classified, rather than real physical differences.

[edit] Radio-quiet AGN
Low-ionization nuclear emission-line regions (LINERs). As the name suggests, these systems show only weak nuclear emission-line regions, and no other signatures of AGN emission. It is debatable whether all such systems are true AGN (powered by accretion on to a supermassive black hole). If they are, they constitute the lowest-luminosity class of radio-quiet AGN. Some may be radio-quiet analogues of the low-excitation radio galaxies (see below).
Seyfert galaxies. Seyferts were the earliest distinct class of AGN to be identified. They show optical nuclear continuum emission, narrow and (sometimes) broad emission lines, (sometimes) strong nuclear X-ray emission and sometimes a weak small-scale radio jet. Originally they were divided into two types known as Seyfert 1 and 2: Seyfert 1s show strong broad emission lines while Seyfert 2s do not, and Seyfert 1s are more likely to show strong low-energy X-ray emission. Various forms of elaboration on this scheme exist: for example, Seyfert 1s with relatively narrow broad lines are sometimes referred to as narrow-line Seyfert 1s. The host galaxies of Seyferts are usually spiral or irregular galaxies.
Radio-quiet quasars/QSOs. These are essentially more luminous versions of Seyfert 1s: the distinction is arbitrary and is usually expressed in terms of a limiting optical magnitude. Quasars were originally 'quasi-stellar' in optical images, and so had optical luminosities that were greater than that of their host galaxy. They always show strong optical continuum emission, X-ray continuum emission, and broad and narrow optical emission lines. Some astronomers use the term QSO (Quasi-Stellar Object) for this class of AGN, reserving 'quasar' for radio-loud objects, while others talk about radio-quiet and radio-loud quasars. The host galaxies of quasars can be spirals, irregulars or ellipticals: there is a correlation between the quasar's luminosity and the mass of its host galaxy, so that the most luminous quasars inhabit the most massive galaxies (ellipticals).
'Quasar 2s'. By analogy with Seyfert 2s, these are objects with quasar-like luminosities but without strong optical nuclear continuum emission or broad line emission. They are hard to find in surveys, though a number of possible candidate quasar 2s have been identified.

[edit] Radio-loud AGN
See main article radio galaxies for discussion of the large-scale behaviour of the jets. Here we discuss the active nuclei only.
Radio-loud quasars. These behave exactly like radio-quiet quasars with the addition of emission from a jet. Thus they show strong optical continuum emission, broad and narrow emission lines, and strong X-ray emission, together with nuclear and often extended radio emission.
'Blazars' (BL Lac objects and OVV quasars). These classes are distinguished by rapidly variable, polarized optical, radio and X-ray emission. BL Lac objects show no optical emission lines, broad or narrow, so that their redshifts can only be determined from features in the spectral of their host galaxies. The emission-line features may be intrinsically absent or simply swamped by the additional variable component: in the latter case, it may become visible when the variable component is at a low level (Vermeulen et al. 1995). OVV quasars behave more like standard radio-loud quasars with the addition of a rapidly variable component. In both classes of source, the variable emission is believed to originate in a relativistic jet oriented close to the line of sight. Relativistic effects amplify both the luminosity of the jet and the amplitude of variability.
Radio galaxies. These objects show nuclear and extended radio emission. Their other AGN properties are heterogeneous. They can broadly be divided into low-excitation and high-excitation classes ( Hine & Longair 1979; Laing et al. 1994). Low-excitation objects show no strong narrow or broad emission lines, and the emission lines they do have may be excited by a different mechanism (Baum, Zirbel & O'Dea 1995). Their optical and X-ray nuclear emission is consistent with originating purely in a jet ( Chiaberge, Capetti & Celotti 2002; Hardcastle, Evans & Croston 2006). They may be the best current candidates for AGN with radiatively inefficient accretion. By contrast, high-excitation objects (narrow-line radio galaxies) have emission-line spectra similar to those of Seyfert 2s. The small class of broad-line radio galaxies, which show relatively strong nuclear optical continuum emission (Grandi & Osterbrock 1978) probably includes some objects that are simply low-luminosity radio-loud quasars. The host galaxies of radio galaxies, whatever their emission-line type, are essentially always ellipticals.

[edit] Unification
Unified models of AGN unite two or more classes of objects, based on the traditional observational classifications, by proposing that they are really a single type of physical object observed under different conditions. The currently favoured unified models are 'orientation-based unified models' meaning that they propose that the apparent differences between different types of objects arise simply because of their different orientations to the observer. For an overview of these see (Antonucci 1993) and (Urry & Padovani 1995), though some details in the discussion below have emerged since these reviews were written.

[edit] Radio-quiet unification
At low luminosities, the objects to be unified are Seyfert galaxies. The unified models propose that in Seyfert 1s we are observing the active nucleus directly. In Seyfert 2s we observe it through an obscuring structure which prevents us getting a direct view of the optical continuum, broad-line region or (soft) X-ray emission. The key insight of orientation-dependent accretion models is that the two types of object can be the same if only certain angles to the line of sight are observed. The standard picture is of a torus of obscuring material surrounding the accretion disc. It must be large enough to obscure the broad-line region but not large enough to obscure the narrow-line region, which is seen in both classes of object. We see Seyfert 2s through the torus. Outside the torus there is material that can scatter some of the nuclear emission into our line of sight, allowing us to see some optical and X-ray continuum and, in some cases, broad emission lines -- which are strongly polarized, showing that they have been scattered and proving that some Seyfert 2s really do contain hidden Seyfert 1s. Infrared observations of the nuclei of Seyfert 2s also support this picture.
At higher luminosities, quasars take the place of Seyfert 1s, but, as already mentioned, the corresponding 'quasar 2s' are elusive at present. If they do not have the scattering component of Seyfert 2s they would be hard to detect except through their luminous narrow-line and hard X-ray emission.

[edit] Radio-loud unification
Historically work on radio-loud unification has concentrated on high-luminosity radio-loud quasars. These can be unified with narrow-line radio galaxies in a manner directly analoguous to the Seyfert 1/2 unification (but without the complication of much in the way of a reflection component: narrow-line radio galaxies show no nuclear optical continuum or reflected X-ray component, although they do occasionally show polarized broad-line emission). The large-scale radio structures of these objects provide compelling evidence that the orientation-based unified models really are true ( Laing 1988: Garrington et al. 1988: Barthel 1989). X-ray evidence, where available, supports the unified picture: radio galaxies show evidence of obscuration from a torus, while quasars do not, although care must be taken since radio-loud objects also have a soft unabsorbed jet-related component, and high resolution is necessary to separate out thermal emission from the sources' large-scale hot-gas environment (e.g. Belsole, Worrall & Hardcastle 2006). At very small angles to the line of sight, relativistic beaming dominates, and we see a blazar of some variety.
However, the population of radio galaxies is completely dominated by low-luminosity, low-excitation objects. These do not show strong nuclear emission lines -- broad or narrow -- they have optical continua which appear to be entirely jet-related (Chiaberge, Capetti & Celotti 2002), and their X-ray emission is also consistent with coming purely from a jet, with no heavily absorbed nuclear component in general (Hardcastle, Evans & Croston 2006). These objects cannot be unified with quasars, even though they include some high-luminosity objects when looking at radio emission, since the torus can never hide the narrow-line region to the required extent, and since infrared studies show that they have no hidden nuclear component (e.g. Ogle, Whysong & Antonucci 2006): in fact there is no evidence for a torus in these objects at all. Most likely, they form a separate class in which only jet-related emission is important. At small angles to the line of sight, they will appear as BL Lac objects (e.g., Browne 1983).

[edit] Cosmological uses and evolution
For a long time, active galaxies held all the records for the highest-redshift objects known, because of their high luminosity (either in the optical or the radio): they still have a role to play in studies of the early universe, but it is now recognised that by its nature an AGN gives a highly biased picture of the 'typical' high-redshift galaxy.
More interesting is the study of the evolution of the AGN population. Most luminous classes of AGN (radio-loud and radio-quiet) seem to have been much more numerous in the early universe. This suggests (1) that massive black holes formed early on and (2) that the conditions for the formation of luminous AGN were more readily available in the early universe -- for example, that there was a much higher availability of cold gas near the centre of galaxies than there is now. It also implies, of course, that many objects that were once luminous quasars are now much less luminous, or entirely quiescent. The evolution of the low-luminosity AGN population is much less well constrained because of the difficulty of detecting and observing these objects at high redshifts.

Galaxies

A galaxy (from the Greek root galakt-, meaning "milk", a reference to our own Milky Way) is a massive, gravitationally bound system consisting of stars, an interstellar medium of gas and dust, and dark matter. Typical galaxies range from dwarfs with as few as ten million[1] (107) stars up to giants with one trillion[2] (1012) stars, all orbiting a common center of mass. Galaxies can also contain many multiple star systems, star clusters, and various interstellar clouds.
Historically, galaxies have been categorized according to their apparent shape (usually referred to as their visual morphology). A common form is the elliptical galaxy,[3] which has an ellipse-shaped light profile. Spiral galaxies are disk-shaped assemblages with curving, dusty arms. Galaxies with irregular or unusual shapes are known as peculiar galaxies, and typically result from disruption by the gravitational pull of neighbouring galaxies. Such interactions between nearby galaxies, which may ultimately result in galaxies merging, may induce episodes of significantly increased star formation, producing what is called a starburst galaxy. Small galaxies that lack a coherent structure could also be referred to as irregular galaxies.[4]
There are probably more than one hundred billion (1011) galaxies in the observable universe.[5] Most galaxies are a thousand to a hundred thousand[2] parsecs in diameter and are usually separated by distances on the order of millions of parsecs (or megaparsecs).[6] Intergalactic space (the space between galaxies) is filled with a tenuous gas of an average density less than one atom per cubic metre. The majority of galaxies are organized into a hierarchy of associations called clusters, which, in turn, can form larger groups called superclusters. These larger structures are generally arranged into sheets and filaments, which surround immense voids in the universe.[7]
Although theoretical, dark matter appears to account for around 90% of the mass of most galaxies. But the nature of these unseen components is not well understood. Observational data suggests that supermassive black holes may exist at the center of many, if not all, galaxies. They are proposed to be the primary cause of active galactic nuclei found at the core of some galaxies. The Milky Way galaxy, home of Earth and the solar system, appears to harbor at least one such object within its nucleus.
[edit] Etymology
The word Galaxy derives from the Greek term for our own galaxy, galaxias (γαλαξίας), or kyklos galaktikos, meaning "milky circle" for its appearance in the sky. In Greek mythology, Zeus placed his son born by a mortal woman, the infant Heracles, on Hera's breast as she was asleep, so that the baby would drink her divine milk and would thus become immortal. Hera woke up while breastfeeding, and realized she was nursing an unknown baby: she pushed the baby away and a jet of her milk sprayed the night sky, producing the faint band of light known as the Milky Way.[9]
The terms galaxy and Milky Way first appeared in the English language in a poem by Chaucer.
"See yonder, lo, the Galaxyë Which men clepeth the Milky Wey, For hit is whyt."
—Geoffrey Chaucer, Geoffrey Chaucer The House of Fame, c. 1380.[10]
When William Herschel constructed his catalog of deep sky objects, he used the name "spiral nebula" for certain objects such as M31. These would later be recognized as immense conglomerations of stars, once the true distance to these objects was appreciated, and they would be termed "Island universes". However, the word universe was understood to mean the entirety of existence, so this expression fell into disuse and the objects instead became known as galaxies.[11]

[edit] Observation history
In 1610, Galileo Galilei used a telescope to study the bright band on the night sky known as the Milky Way and discovered that it was composed of a huge number of faint stars.[12] In a treatise in 1755, Immanuel Kant, drawing on earlier work by Thomas Wright, speculated (correctly) that the Galaxy might be a rotating body of a huge number of stars, held together by gravitational forces akin to the solar system but on much larger scales. The resulting disk of stars would be seen as a band on the sky from our perspective inside the disk. Kant also conjectured that some of the nebulae visible in the night sky might be separate galaxies.[13]

Sketch of the Whirlpool Galaxy by Lord Rosse in 1845
Towards the end of the 18th century, Charles Messier compiled a catalog containing the 109 brightest nebulae (celestial objects with a nebulous appearance), later followed by a larger catalog of five thousand nebulae assembled by William Herschel.[13] In 1845, Lord Rosse constructed a new telescope and was able to distinguish between elliptical and spiral-shaped nebulae. He also managed to make out individual point sources in some of these nebulae, lending credence to Kant's earlier conjecture.[14]
In 1917, Heber Curtis had observed the nova S Andromedae within the Messier object M31. Searching the photographic record, he found 11 more novae. Curtis noticed that these novae were, on average, 10 magnitudes fainter than those that occurred within our galaxy. As a result he was able to come up with a distance estimate of 150,000 parsecs. He became a proponent of the so-called "island universes" hypothesis, which held that the spiral nebulae were actually independent galaxies.[15]
In 1920 the so-called Great Debate took place between Harlow Shapley and Heber Curtis, concerning the nature of the Milky Way, spiral nebulae, and the dimensions of the universe. To support his claim that M31 was an external galaxy, Curtis noted the appearance of dark lanes resembling the dust clouds in our own galaxies, as well as the significant Doppler shift.[16]
The matter was conclusively settled by Edwin Hubble in the early 1920s using a new telescope. He was able to resolve the outer parts of some spiral nebulae as collections of individual stars and identified some Cepheid variables, thus allowing him to estimate the distance to the nebulae: they were far too distant to be part of the Milky Way.[17] In 1936 Hubble produced a classification system for galaxies that is used to this day, the Hubble sequence.[18]
The first attempt to describe the shape of the Milky Way and the position of the Sun within it was carried out by William Herschel in 1785 by carefully counting the number of stars in different regions of the sky. Using a refined approach, Kapteyn in 1920 arrived at the picture of a small (diameter about 15 kiloparsecs) ellipsoid galaxy with the Sun close to the center. A different method by Harlow Shapley based on the cataloging of globular clusters led to a radically different picture: a flat disk with diameter approximately 70 kiloparsecs and the Sun far from the center.[13] Both analyses failed to take into account the absorption of light by interstellar dust present in the galactic plane, but after Robert Julius Trumpler quantified this effect in 1930 by studying open clusters, the present picture of our galaxy emerged.[19]
In 1944, Hendrik van de Hulst predicted microwave radiation at a wavelength of 21 cm, resulting from interstellar atomic hydrogen gas;[20] this radiation was observed in 1951. The radiation allowed for much improved study of the Galaxy, since it is not affected by dust absorption and its Doppler shift can be used to map the motion of the gas in the Galaxy. These observations led to the postulation of a rotating bar structure in the center of the Galaxy.[21] With improved radio telescopes, hydrogen gas could also be traced in other galaxies.

Rotation curve of a typical spiral galaxy: predicted (A) and observed (B). The distance is from the galactic core.
In the 1970s it was discovered in Vera Rubin's study of the rotation speed of gas in galaxies that the total visible mass (from stars and gas) does not properly account for the speed of the rotating gas. This galaxy rotation problem is thought to be explained by the presence of large quantities of unseen dark matter.[22]
Beginning in the 1990s, the Hubble Space Telescope yielded improved observations. Among other things, it established that the missing dark matter in our galaxy cannot solely consist of inherently faint and small stars.[23] The Hubble Deep Field, an extremely long exposure of a relatively empty part of the sky, provided evidence that there are about one hundred and seventy five billion galaxies in the universe.[24] Improved technology in detecting the spectra invisible to humans (radio telescopes, infra-red cameras, x-ray telescopes), allow detection of other galaxies that are not detected by Hubble. Particularly, galaxy surveys in the zone of avoidance (the region of the sky blocked by the Milky Way) have revealed a number of new galaxies.[25]

[edit] Types and morphology
Main article: Galaxy morphological classification

Types of galaxies according to the Hubble classification scheme. An E indicates a type of elliptical galaxy; an S is a spiral, and SB is a barred-spiral galaxy.[a]
Galaxies come in three main types: ellipticals, spirals, and irregulars. A slightly more extensive description of galaxy types based on their appearance is given by the Hubble sequence. Since the Hubble sequence is entirely based upon visual morphological type, it may miss certain important characteristics of galaxies such as star formation rate (in starburst galaxies) or activity in the core (in active galaxies).[4]

[edit] Ellipticals
Main article: Elliptical galaxy
The Hubble classification system rates elliptical galaxies on the basis of their ellipticity, ranging from E0, being nearly spherical, up to E7, which is highly elongated. These galaxies have an ellipsoidal profile, giving them an elliptical appearance regardless of the viewing angle. Their appearance shows little structure and they typically have relatively little interstellar matter. Consequently these galaxies also have a low portion of open clusters and a reduced rate of new star formation. Instead the galaxy is dominated by generally older, more evolved stars that are orbiting the common center of gravity in random directions. In this sense they have some similarity to the much smaller globular clusters.[26]
The largest galaxies are giant ellipticals. Many elliptical galaxies are believed to form due to the interaction of galaxies, resulting in a collision and merger. They can grow to enormous sizes (compared to spiral galaxies, for example), and giant elliptical galaxies are often found near the core of large galaxy clusters.[27] Starburst galaxies are the result of such a galactic collision that can result in the formation of an elliptical galaxy.[26]

[edit] Spirals
Main articles: Spiral galaxy and Barred spiral galaxy
Spiral galaxies consist of a rotating disk of stars and interstellar medium, along with a central bulge of generally older stars. Extending outward from the bulge are relatively bright arms. In the Hubble classification scheme, spiral galaxies are listed as type S, followed by a letter (a, b, or c) that indicates the degree of tightness of the spiral arms and the size of the central bulge. An Sa galaxy has tightly wound, poorly-defined arms and possesses a relatively large core region. At the other extreme, an Sc galaxy has open, well-defined arms and a small core region.[28]
In spiral galaxies, the spiral arms have the shape of approximate logarithmic spirals, a pattern that can be theoretically shown to result from a disturbance in a uniformly rotating mass of stars. Like the stars, the spiral arms also rotate around the center, but they do so with constant angular velocity. That means that stars pass in and out of spiral arms, with stars near the galactic core orbiting faster than the arms are moving while stars near the outer parts of the galaxy typically orbit more slowly than the arms. The spiral arms are thought to be areas of high density of matter, or "density waves". As stars moves through an arm, the space velocity of each stellar system is modified by the gravitational force of the higher density. (The velocity returns to normal after the stars depart on the other side of the arm.) This effect is akin to a "wave" of slowdowns moving along a highway full of moving cars. The arms are visible because the high density facilitates star formation, and therefore they harbor many bright and young stars.

The barred spiral galaxy NGC 1300 (NASA/ESA Hubble Space Telescope photo).
A majority of spiral galaxies have a linear, bar-shaped band of stars that extends outward to either side of the core, then merges into the spiral arm structure.[29] In the Hubble classification scheme, these are designated by an SB, followed by a lower-case letter (a, b or c) that indicates the form of the spiral arms (in the same manner as the categorization of normal spiral galaxies). Bars are thought to be temporary structures that can occur as a result of a density wave radiating outward from the core, or else due to a tidal interaction with another galaxy.[30] Many barred spiral galaxies are active, possibly as a result of gas being channeled into the core along the arms.[31]
Our own galaxy, the Milky Way, sometimes simply called the Galaxy (with uppercase), is a large disk-shaped barred-spiral galaxy[32] about 30 kiloparsecs in diameter and a kiloparsec in thickness. It contains about two hundred billion (2×1011)[33] stars and has a total mass of about six hundred billion (6×1011) times the mass of the Sun.[34]

[edit] Other morphologies

Hoag's Object, an example of a ring galaxy. (NASA/ESA Hubble Space Telescope image).
Peculiar galaxies are galactic formations that develop unusual properties due to tidal interactions with other galaxies. An example of this is the ring galaxy, which possesses a ring-like structure of stars and interstellar medium surrounding a bare core. A ring galaxy is thought to occur when a smaller galaxy passes through the core of a spiral galaxy.[35] Such an event may have affected the Andromeda Galaxy, as it displays a multi-ring-like structure when viewed in infrared radiation.[36]
A lenticular galaxy is an intermediate form that has properties of both elliptical and spiral galaxies. These are categorized as Hubble type S0, and they possess ill-defined spiral arms with an elliptical halo of stars.[37] (Barred lenticular galaxies receive Hubble classification SB0.)
In addition to the classifications mentioned above, there are a number of galaxies that can not be readily classified into an elliptical or spiral morphology. These are categorized as irregular galaxies. An Irr-I galaxy has some structure but does not align cleanly with the Hubble classification scheme. Irr-II galaxies do not possess any structure that resembles a Hubble classification, and may have been disrupted.[38] Nearby examples of (dwarf) irregular galaxies include the Magellanic Clouds.

[edit] Dwarf
Main article: Dwarf galaxy
Despite the prominence of large elliptical and spiral galaxies, most galaxies in the universe appear to be dwarf galaxies. These tiny galaxies are about one hundredth the size of the Milky Way, containing only a few billion stars. Ultra-compact dwarf galaxies have recently been discovered that are only 100 parsecs across.[39]
Many dwarf galaxies may orbit a single larger galaxy; the Milky Way has at least a dozen such satellites, with an estimated 300–500 yet to be discovered.[40] Dwarf galaxies may also be classified as elliptical, spiral, or irregular. Since small dwarf ellipticals bear little resemblance to large ellipticals, they are often called dwarf spheroidal galaxies instead.

[edit] Unusual dynamics and activities

[edit] Interacting
Main article: Interacting galaxy
The average separation between galaxies within a cluster is a little over an order of magnitude larger than their diameter. Hence interactions between these galaxies are relatively frequent, and play an important role in their evolution. Near misses between galaxies result in warping distortions due to tidal interactions, and may cause some exchange of gas and dust.[41][42]

The Antennae Galaxies are undergoing a collision that will result in their eventual merger (NASA/ESA Hubble Space Telescope image).
Collisions occur when two galaxies pass directly through each other and have sufficient relative momentum not to merge. The stars within these interacting galaxies will typically pass straight through without colliding. However, the gas and dust within the two forms will interact. This can trigger bursts of star formation as the interstellar medium becomes disrupted and compressed. A collision can severely distort the shape of one or both galaxies, forming bars, rings or tail-like structures.[41][42]
At the extreme of interactions are galactic mergers. In this case the relative momentum of the two galaxies is insufficient to allow the galaxies to pass through each other. Instead, they gradually merge together to form a single, larger galaxy. Mergers can result in significant changes to morphology, as compared to the original galaxies. In the case where one of the galaxies is much more massive, however, the result is known as cannibalism. In this case the larger galaxy will remain relatively undisturbed by the merger, while the smaller galaxy is torn apart. The Milky Way galaxy is currently in the process of cannibalizing the Sagittarius Dwarf Elliptical Galaxy and the Canis Major Dwarf Galaxy.[41][42]

[edit] Starburst
Main article: Starburst galaxy

M82, the archetype starburst galaxy, has experienced a 10-fold increase[43] in star formation rate as compared to a "normal" galaxy (NASA/ESA/STSci image).
Stars are created within galaxies from a reserve of cold gas that forms into giant molecular clouds. Some galaxies have been observed to form stars at an exceptional rate, known as a starburst. Should they continue to do so, however, they would consume their reserve of gas in a time frame lower than the lifespan of the galaxy. Hence starburst activity usually lasts for only about ten million years, a relatively brief period in the history of a galaxy. Starburst galaxies were more common during the early history of the universe,[44] and, at present, still contribute an estimated 15% to the total star production rate.[45]
Starburst galaxies are characterized by dusty concentrations of gas and the appearance of newly-formed stars, including massive stars that ionize the surrounding clouds to create H II regions.[46] These massive stars also produce supernova explosions, resulting in expanding remnants that interact powerfully with the surrounding gas. These outbursts trigger a chain reaction of star building that spreads throughout the gaseous region. Only when the available gas is nearly consumed or dispersed does the starburst activity come to an end.[44]
Starbursts are often associated with merging or interacting galaxies. The prototype example of such a starburst-forming interaction is M82, which experienced a close encounter with the larger M81. Irregular galaxies often exhibit spaced knots of starburst activity.[47]

[edit] Active nucleus
Main article: Active galactic nucleus
A portion of the galaxies we can observe are classified as active. That is, a significant portion of the total energy output from the galaxy is emitted by a source other than the stars, dust and interstellar medium.
The standard model for an active galactic nucleus is based upon an accretion disc that forms around a supermassive black hole (SMBH) at the core region. The radiation from an active galactic nucleus results from the gravitational energy of matter as it falls toward the black hole from the disc.[48] In about 10% of these objects, a diametrically opposed pair of energetic jets ejects particles from the core at velocities close to the speed of light. The mechanism for producing these jets is still not well-understood.[49]

A jet of particles is being emitted from the core of the elliptical radio galaxy M87 (NASA/ESA Hubble Space Telescope image).
Active galaxies that emit high-energy radiation in the form of x-rays are classified as Seyfert galaxies or quasars, depending on the luminosity. Blazars are believed to be an active galaxy with a relativistic jet that is pointed in the direction of the Earth. A radio galaxy emits radio frequencies from relativistic jets. A unified model of these types of active galaxies explains their differences based on the viewing angle of the observer.[49]
Possibly related to active galactic nuclei (as well as starburst regions) are low-ionization nuclear emission-line regions (LINERs). The emission from LINER-type galaxies is dominated by weakly-ionized elements.[50] Approximately one-third of nearby galaxies are classified as containing LINER nuclei.[48][50][51]

[edit] Formation and evolution
Main article: Galaxy formation and evolution
The study of galactic formation and evolution attempts to answer questions regarding how galaxies formed and their evolutionary path over the history of the universe. Some theories in this field have now become widely accepted, but it is still an active area in astrophysics.

[edit] Formation
Current cosmological models of the early Universe are based on the Big Bang theory. About 300,000 years after this event, atoms of hydrogen and helium began to form, in an event called recombination. Nearly all the hydrogen was neutral (non-ionized) and readily absorbed light, and no stars had yet formed. As a result this period has been called the "Dark Ages". It was from density fluctuations (or anisotropic irregularities) in this primordial matter that larger structures began to appear. As a result, masses of baryonic matter started to condense within cold dark matter halos.[52] These primordial structures would eventually become the galaxies we see today.
Evidence for the early appearance of galaxies was found in 2006, when it was discovered that the galaxy IOK-1 has an unusually high redshift of 6.96, making it the most distant galaxy yet seen.[53] While some scientists have claimed other objects (such as Abell 1835 IR1916) have higher redshifts (and therefore are seen in an earlier stage of the Universe's evolution), IOK-1's age and composition have been more reliably established. The existence of such early protogalaxies suggests that they must have grown in the so-called "Dark Ages".[54]
The detailed process by which such early galaxy formation occurred is a major open question in astronomy. Theories could be divided into two categories: top-down and bottom-up. In top-down theories (such as the Eggen–Lynden-Bell–Sandage [ELS] model), protogalaxies form in a large-scale simultaneous collapse lasting about one hundred million years.[55] In bottom-up theories (such as the Searle-Zinn [SZ] model), small structures such as globular clusters form first, and then a number of such bodies accrete to form a larger galaxy.[56] Modern theories must be modified to account for the probable presence of large dark matter halos.
Once protogalaxies began to form and contract, the first halo stars (called Population III stars) appeared within them. These were composed almost entirely of hydrogen and helium, and may have been massive. If so, these huge stars would have quickly consumed their supply of fuel and became supernovae, releasing heavy elements into the interstellar medium.[57] This first generation of stars re-ionized the surrounding neutral hydrogen, creating expanding bubbles of space through which light could readily travel.[58]

[edit] Evolution

I Zwicky 18 (lower left) is a recently-formed galaxy that may still be producing its first generation of stars[59] (NASA/ESA Hubble Space Telescope image).
Within a billion years of a galaxy's formation, key structures begin to appear. Globular clusters, the central supermassive black hole, and a galactic bulge of metal-poor Population II stars form. The creation of a supermassive black hole appears to play a key role in actively regulating the growth of galaxies by limiting the total amount of additional matter added.[60]
During the following two billion years, the accumulated matter settles into a galactic disc.[61] A galaxy will continue to absorb infalling material from high velocity clouds and dwarf galaxies throughout its life.[62] This matter is mostly hydrogen and helium. The cycle of stellar birth and death slowly increases the abundance of heavy elements, eventually allowing the formation of planets.[63]
The evolution of galaxies can be significantly affected by interactions and collisions. Mergers of galaxies were common during the early epoch, and the majority of galaxies were peculiar in morphology.[64] Given the distances between the stars, the great majority of stellar systems in colliding galaxies will be unaffected. However, gravitational stripping of the interstellar gas and dust that makes up the spiral arms produces a long train of stars, similar to that seen in NGC 250[65] or the Antennae Galaxies.[66]
As an example of such an interaction, the Milky Way galaxy and the nearby Andromeda Galaxy are moving toward each other at about 130 km/s, and—depending upon the lateral movements—the two may collide in about five to six billion years. Although the Milky Way has never collided with a galaxy as large as Andromeda before, evidence of past collisions of the Milky Way with smaller dwarf galaxies is increasing.[67]
Such large-scale interactions are rare. As time passes, mergers of two systems of equal size become less common. Most bright galaxies have remained fundamentally unchanged for the last few billion years, and the net rate of star formation also peaked approximately five billion years ago.[68]

[edit] Future trends
At present, most star formation occurs in smaller galaxies where cool gas is not so depleted.[64] Spiral galaxies, like the Milky Way, only produce new generations of stars as long as they have dense molecular clouds of interstellar hydrogen in their spiral arms.[69] Elliptical galaxies are already largely devoid of this gas, and so form no new stars.[70] The supply of star-forming material is finite; once stars have converted the available supply of hydrogen into heavier elements, new star formation will come to an end.[71]
The current era of star formation is expected to continue for up to one hundred billion years, and then the "stellar age" will wind down after about ten trillion to one hundred trillion years (1013–1014 years), as the smallest, longest-lived stars in our astrosphere, tiny red dwarfs, begin to fade. At the end of the stellar age galaxies will be composed of compact objects: brown dwarfs, white dwarfs that are cooling or cold ("black dwarfs"), neutron stars, and black holes. Eventually, as a result of gravitational relaxation, all stars will either fall into central supermassive black holes or be flung into intergalactic space as a result of collisions.[72][71]

[edit] Larger scale structures
Main articles: Large-scale structure of the cosmos and Groups and clusters of galaxies
Deep sky surveys show that galaxies are often found in relatively close association with other galaxies. Solitary galaxies that have not significantly interacted with another galaxy of comparable mass during the past billion years are relatively scarce. Only about 5% of the galaxies surveyed have been found to be truly isolated; however, these isolated formations may have interacted and even merged with other galaxies in the past, and may still be orbited by smaller, satellite galaxies. Isolated galaxies[b] can produce stars at a higher rate than normal, as their gas is not being stripped by other, nearby galaxies.[73]
On the largest scale, the universe is continually expanding, resulting in an average increase in the separation between individual galaxies (see Hubble's law). Associations of galaxies can overcome this expansion on a local scale through their mutual gravitational attraction. These associations formed early in the universe, as clumps of dark matter pulled their respective galaxies together. Nearby groups later merged to form larger-scale clusters. This on-going merger process (as well as an influx of infalling gas) heats the inter-galactic gas within a cluster to very high temperatures, reaching 30–100 million K.[74] About 70–80% of the mass in a cluster is in the form of dark matter, with 10–30% consisting of this heated gas and the remaining few percent of the matter in the form of galaxies.[75]

Seyfert's Sextet is an example of a compact galaxy group (NASA Hubble Space Telescope image).
Most galaxies in the universe are gravitationally bound to a number of other galaxies. These form a fractal-like hierarchy of clustered structures, with the smallest such associations being termed groups. A group of galaxies is the most common type of galactic cluster, and these formations contain a majority of the galaxies (as well as most of the baryonic mass) in the universe.[76][77] To remain gravitationally bound to such a group, each member galaxy must have a sufficiently low velocity to prevent it from escaping (see Virial theorem). If there is insufficient kinetic energy, however, the group may evolve into a smaller number of galaxies through mergers.[78]
Larger structures containing many thousands of galaxies packed into an area a few megaparsecs across are called clusters. Clusters of galaxies are often dominated by a single giant elliptical galaxy, known as the brightest cluster galaxy, which, over time, tidally destroys its satellite galaxies and adds their mass to its own.[79]
Superclusters are giant collections containing tens of thousands of galaxies, found in clusters, groups and sometimes individually. At the supercluster scale, galaxies are arranged into sheets and filaments surrounding vast empty voids.[80] Above this scale, the universe appears to be isotropic and homogeneous.[81]
The Milky Way galaxy is a member of an association named the Local Group, a relatively small group of galaxies that has a diameter of approximately one megaparsec. The Milky Way and the Andromeda Galaxy are the two brightest galaxies within the group; many of the other member galaxies are dwarf companions of these two galaxies.[82] The Local Group itself is a part of a cloud-like structure within the Virgo Supercluster, a large, extended structure of groups and clusters of galaxies centered around the Virgo Cluster.[83]

[edit] Multi-wavelength observation
After galaxies external to the Milky Way were found to exist, initial observations were made mostly using visible light. The peak radiation of most stars lies here, so the observation of the stars that form galaxies has been a major component of optical astronomy. It is also a favorable portion of the spectrum for observing ionized H II regions, and for examining the distribution of dusty arms.

A radio map of the galaxy Centaurus A (upper left and lower right) is overlaid across the optical image (center), showing two lobes from the jets being generated by an active nucleus (NASA image).
The dust present in the interstellar medium is opaque to visual light. It is more transparent to far-infrared, which can be used to observe the interior regions of giant molecular clouds and galactic cores in great detail.[84] Infrared is also used to observe distant, red-shifted galaxies that were formed much earlier in the history of the universe. Water vapor and carbon dioxide absorb a number of useful portions of the infrared spectrum, so high-altitude or space-based telescopes are used for infrared astronomy.
The first non-visual study of galaxies, particularly active galaxies, was made using radio frequencies. The atmosphere is nearly transparent to radio between 5 MHz and 30 GHz. (The ionosphere blocks signals below this range.)[85] Large radio interferometers have been used to map the active jets emitted from active nuclei. Radio telescopes can also be used to observe neutral hydrogen (via 21 centimetre radiation), including, potentially, the non-ionized matter in the early universe that later collapsed to form galaxies.[86]
Ultraviolet and X-ray telescopes can observe highly energetic galactic phenomena. An ultraviolet flare was observed when a star in a distant galaxy was torn apart from the tidal forces of a black hole.[87] The distribution of hot gas in galactic clusters can be mapped by X-rays. The existence of super-massive black holes at the cores of galaxies was confirmed through X-ray astronomy.